Second Grade

Domain Target	Cluster Target	Domain \& Standard	Standard	Learning Target	A Specific Example	ONE Example of Assessment
Operations \& Alge	* Operations \& Alg	ra * O	O	bra * Operations \& Algebra * Ope	S \& Algebra * Operations \& Al	Algeb
I can solve addition and subtraction problems efficiently and have found strategies to group objects to help adding large number of objects.	I can solve real world problems using addition and subtraction.	2.OA-1	2.OA 1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and	I can add or subtract any two numbers between 0 and 100 within a one and two step word problem.	Todd read 23 pages yesterday and 42 pages today. How many pages did he read in both days?	Todd read 23 pages yesterday and 42 pages today. How many pages did he read in both days?
				I can explain my arithmetic using drawings and equations (with symbols for the "unknown")	Write an equation for the above problem using "b" to represent the total number of books.	Write an equation for the above problem using "b" to represent the total number of books.
	I am comfortable and efficient adding and subtracting within 20.	2.OA-2	2.OA 2. Fluently add and subtract within 20 using mental strategies.[2] By end of Grade 2, know from memory all sums of two onedigit numbers.	I can QUICKLY and EASILY add and subtract any two numbers from 0 to 9 .	Without any external assistance and without mentally counting, they can recite the addition and subtraction facts within 20.	Recite addition and subtraction facts in the allotted time.
	I can work with equal groups and arrays to more easily find the total of the objects	2.OA-3	2.OA 3. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	I can identify whether a group of objects (up to 20) has an even or odd number.	The student can identify an even or odd number of objects Give at least two different explanations on how to explain why a number of objects is even or odd.	Does this group have an even or odd number of objects?
				I can explain to another person what even means using objects and an equation.		Write an equation that would show why the number 12 is even.
		2.OA-4	2.OA 4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	I can find the number of objects in an array by using repeated addition.	Use addition to find the number of objects.	What numbers can you add to find the total number of dots?
				I can write an equation to find the number of objects in an array.	$\begin{array}{ll}\begin{array}{l}\text { The student can write } \\ \text { the equation } 4+4+4 \\ =\text { B to total this array }\end{array} & \ldots \text {. } \\ & \text {. } \text {. }\end{array}$	Write an equation to find the number of dots in the array.
Number Base Ten I can solve addition	umber Base Ten	Number Base Ten * Number Base Ten * N		Number Base Ten * Number Base Ten * Nun	ber Base Ten * Number Base	Ten * Number Base Ten
	I can explain how the value of the digits in a three digit number change with their placement.	2.NBT-1a	2.NBT 1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens - called a "hundred."	I can explain the value of each digit in a three digit number.	The student can explain the value of each digit in the number 351.	Explain why the value of the digit 3 in 351 is worth more than the 5 .
				I can explain how ten tens can be put together to form a hundred.	The student can explain how once you reach a maximum of ten tens, the hundreds increases by one.	Carl thinks that when you add ten to 394 it should be 3104 or 3(10)4. Explain why this is not correct.
		2.NBT-1b	2.NBT 1. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: b. The numbers $100,200,300,400,500$, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	I can explain the value of each digit in a three digit number.	The student can explain the value of each digit in the number 351.	What is the value of the digit 7 in 738 ?
				I can explain how all the hundreds are related to one another because they have no ones or tens.	The student can explain how the hundreds numbers relate to one another (100x) and how their values are determined by our base 10 number system.	How many hundreds, tens, and ones are in the answer to $300+500$?
		2.NBT-2	2.NBT 2. Count within 1000; skip-count by 5s, 10 s , and 100 s .	I can skip count by 5's, 10 's, or 100 's up to 1000 and starting at any number.	The student can skip count by 5's starting with 245 .	Counting by 10 's, name the next three numbers. 680, \qquad
		2.NBT-3	2.NBT 3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form [6].	I can read and write any number from 1 to 1000 in "regular" form, words, or expanded form.	The student knows that 301 is the same as 'Three hundred one" and " $300+1$ ".	Write the expanded form of 542.

Second Grade

Domain Target	Cluster Target	Domain \& Standard	Standard	Learning Target	A Specific Example	ONE Example of Assessment
and subtraction problems efficiently and have found strategies to group objects to help adding large number of objects.		2.NBT-4	2.NBT 4. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, $=$, and < symbols to record the results of comparisons.	I can correctly compare 3 -digit numbers using $>$, $=$, and < by observing the value of their digits.	I know 901 is larger than 309 because the 9 in the hundreds column is much more than 9 in the ones column. So $901>309$	Which of the following is true. $\begin{aligned} & 123>321 \\ & 123=321 \\ & 123<321 \end{aligned}$
	I can use my understanding of place value to better explain the properties of addition and subtraction and to be more efficient in mental calculation.	2.NBT-5	2.NBT 5. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction	I can EASILY add and subtract any two numbers from 0 to 100 .	The student can explain strategies to add $34+40$ and is efficient in reciting the answer. (i.e. $30+40$ is 70 and then add 4 to get 74 OR $35+$ 40 is 75 then subtract 1 to get 74)	How many tens and how many ones are in the answer when you add 28 and 33 ?
		2.NBT-6	2.NBT 6. Add up to four two-digit numbers using strategies based on place value and properties of operations.	I can add up to four 2-digit numbers using a variety of strategies.	The student can explain how to pair compatible numbers when adding 32 $+7+8+23$.	What numbers could you pair together to help solve the addition problem of $32+7+8+23$
		2.NBT-7	2NBT 7. Add and subtract within 1000 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	I can add and subtract numbers from 0 to 1000 using different strategies based on place value and regrouping.	The student can write a paragraph explaining how to subtract 237 from 825.	Bob tried to solve the following problem. $\begin{array}{\|c} 845 \\ -237 \\ \hline------ \\ 612 \end{array}$ Explain to Bob what he did wrong and what the correct answer is.
		2.NBT-8	2.NBT 8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	I can mentally add or subtract 10 and 100 from any number from 100 to 900.	The student can mentally add 10 to a random number from 0 to 900 .	Name the number that is 100 less than 240.
		2.NBT-9	2.NBT 9. Explain why addition and subtraction strategies work, using place value and the properties of operations. [3]	I can explain why various addition or subtraction strategies work using numbers, drawings, or objects.	The student can use base ten blocks to explain $125+378$.	Use pictures of base ten blocks that explains how to subtract 17 from 23.
Measurement \& Data	Measurement \& Data	Measurement \& Data * Measurement \& Data 2.MD 1. Measure the length of an object by		a * Measurement \& Data * Measurement \& Da	ata * Measurement \& Data	Measurement \& Data * Measurement
	I can measure and estimate lengths in standard units.	2.MD-1	2.MD 1. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	I can measure the length of an object using traditional measuring tools.	The student can measure an object using standard units to a specific level of accuracy.	Measure the length of the pencil to the nearest $1 / 4$ inch.
		2.MD-2	2.MD 2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	I can measure an object using two different units and explain the how the two measures are the same or different.	The student can measure a table width in feet and inches and correctly explain why it takes more inches than feet to describe the measurement.	Sue says that when she changes her measurement from feet to inches it will be a larger number. Explain why you think she is right or wrong.
		2.MD-3	2.MD 3. Estimate lengths using units of inches, feet, centimeters, and meters.	I can estimate the length of an object in inches, feet, centimeters, and meters.	The student can estimate the height of a student in feet.	Estimate the height of the doorway in meters.
		2.MD-4	2.MD 4. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	I can compare the standard measurement of two objects and explain their difference.	The student can measure and explain how much longer the book is than the pencil in inches.	Measure the two lines in inches and determine how much longer one is than the other.
	I can solve real world problems involving the addition and subtraction of lengths.	2.MD-5	2.MD 5. Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	I can add or subtract measurements less than 100 units in word problems using numbers, drawings, and equations.	The student can write an equation that would represent adding three lengths to get a total length.	If the short line is 8 inches and the difference is 3 inches, what is the measure of the longer line?

Second Grade

Second Grade

| |
| :---: | :---: |
| Standard |\quad Standard

[1] See Glossary, Table 1 (shown below).
[2] See standard 1.OA. 6 for a list of men
[2] See standard 1.OA. 6 for a list of mental strategies.
[3] Explanations may be supported by drawings or objects
[4] See Glossary, Table 1 (shown below),
5. Azes are compared directly or visually, not compared by measuring

	Result Unknown	Change Unknown	Start Unknown
Add to	Two bunnies sat on the grass Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$
Take from	Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=?$	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $?-2=3$

Put Together/Take Apart ${ }^{2}$	Total Unknown	Addend Unknown	Both Addends Unknown'
	Three red apples and two green apples are on the table. How many apples are on the table? $3+2=?$	Five apples are on the table. Three are red and the rest are green. How many apples are green? $3+?=5,5-3=?$	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? $\begin{aligned} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \end{aligned}$ $5=2+3,5=3+2$
Compare ${ }^{3}$	Difference Unknown	Bigger Unknown	Smaller Unknown
	("How many more?" version): Lucy has two apples. Julie has five apples. How many than Lucy?	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have?	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have?
	("How many fewer?" version):	(Version with "fewer"):	(Version with "fewer"):
	Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? $2+?=5,5-2=?$	Lucy has 3 fewer apples than Julie. Lucy has two apples. How many apples does Julie have? $2+3=?, 3+2=?$	Lucy has 3 fewer apples than Julie. Julie has five apples. How many apples does Lucy have? $5-3=$?, ? $+3=5$

[^0][3] For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more

[^0]: [2] Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a

