Third Grade * Common Core Mathematics

Third Grade * Common Core Mathematics

Domain Target	Cluster Target	Domain \& Standard	Standard	Learning Target	A Specific Example	ONE Example of Assessment
I can solve real world problems involving addition, subtraction, multiplication, and division. I can explain how these operations work and how they are related to one another.	I can explain the properties of multiplication and division and how they relate to each other.	3.OA-5	3. OA-5. Apply properties of operations as strategies to multiply and divide. [2] Examples: If $6 \times 4=24$ is known, then 4×6 $=24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times$ $5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)$ $=(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.)	I can use numbers to demonstrate (show) the commutative property of multiplication.	$6 \times 4=24$ so $4 \times 6=24$	Explain how the anwer to $27+48$ can be found easily if someone has already told you that $48+27=75$?
				I can use numbers to demonstrate (show) the associative property of multiplication.	$\begin{aligned} & 3 \times 5 \times 2 \text { can be found by } \\ & (3 \times 5) \times 2=30 \text { OR } \\ & 3 \times(5 \times 2)=30 \end{aligned}$	Mary says that she can multiply $17 \times 5 \times 2$ more easily if she multiplies the 56×2 first. Explain why this should still give the correct answer.
				I can use numbers to demonstrate (show) the distributive property of multiplication.	Knowing that $8 \times 5=40$ and 8×2 $=16$, one can find 8×7 as $8 \times(5+$ 2) $=(8 \times 5)+(8 \times 2)=40+16=$ 56	Kelsey says that to multiply 17×5, she first multiplies 10×5. What must she do next to get the correct answer to 17×5 ?
		3.OA-6	3.OA-6. Understand division as an unknownfactor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8.	I can find the missing factor (number) in a division problem.	To find $32 \div 8$ use $8 \times \square=32$	John says he solves the problem of $56 \div 8$ by solving the related multiplication fact. What is the related multiplication fact?
	I can comfortably and efficiently mulitply and divide within 100.	3.OA-7	3.OA-7. Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=$ 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	I can easily (quickly) and accurately multiply any 2 onedigit numbers with products up to 100 .	$9 \times 9=81$	Recite the given multiplication facts in the allotted time.
				I can easily (quickly) and accurately divide any two-digit number with the quotient up to 9 .	$72 \div 8=9$	Recite the given division facts in the allotted time.
	I can solve real world problems using addition, subtraction, multiplication, and division and explain the patterns that appear with these operations.	3.OA-8	3.OA-8. Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. [3]	I can solve 2 step word problems using addition, subtraction, multiplication, and division.	Eliza had \$24 to spend on seven notebooks. After buying them she had $\$ 10$. How much did each notebook cost?	Eliza had $\$ 24$ to spend on seven notebooks. After buying them she had $\$ 10$. How much did each notebook cost?
				I can solve 2 step word problems using addition, subtraction, multiplication, and division with one unknown number.	Henry bought 6 hotdogs and 2 hamburgers. He spent $\$ 5.00$. The hotdogs cost $\$.50$ each. How much did one hamburger cost?	Henry bought 6 hotdogs and 2 hamburgers. He spent $\$ 5.00$. The hotdogs cost $\$.50$ each. How much did one hamburger cost?
				I can determine if the answer makes sense by using mental math, estimation, and rounding.	78-39=39 This makes sense because 78 rounds to 80 and 39 rounds to $40.80-40$ is 40.39 is about 40.	John knows that he and his friend has $\$ 78$ and $\$ 94$. Explain how he can quickly figure out if that is enough to cover a $\$ 200$ expense. (do not calculate the answer)
		3.OA-9	3.OA-9. Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	I can identify and explain addition patterns.	Find the various patterns in an addition table.	Explain why whenever you add a number to itself the answer is always even.
				I can identify and explain subtraction patterns.	$81-9=72,72-9=63,63-9=54,54-$ $9=45$. The difference is 9 because you are subtracting 9 .	You are given two numbers whose difference is 8 . If the one number is increased by 5 what needs to happen to the other number to have the difference remain 5 ?
				I can identify and explain multiplication patterns.	$8 \times 2=16,8 \times 3=24,8 \times 4=32$. The product is increasing by eight each time because the factor being multiplied by 8 is increasing by 1 each time.	Explain why multiples of 6 are always even and divisible by three.

Third Grade * Common Core Mathematics

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Domain Target \& Cluster Target \& Domain \& Standard \& Standard \& Learning Target \& A Specific Example \& ONE Example of Assessment \\
\hline \& \& \& \& I can identify and explain division patterns. \& \begin{tabular}{l}
\[
5 \div 5=1,50 \div 5=10,500 \div 5=100
\] \\
\(5,000 \div 5=1,000\). The dividend and quotient are each increasing by a factor of 10 .
\end{tabular} \& Describe the pattern of answers whenever a number is divided by 10 . \\
\hline Number Base Ten \& Number Base Ten \& \multicolumn{2}{|l|}{Number Base Ten * Number Base Ten * Numbe} \& \multicolumn{2}{|l|}{r Base Ten * Number Base Ten * Number Base Ten * Number Base Ten *} \& Number Base Ten * \\
\hline \multirow{5}{*}{I can use my understanding of place value to help solve arithmetic problems in various ways.} \& \multirow{5}{*}{I can use my understanding of place value to help solve arithmetic problems in various ways.} \& \multirow[t]{2}{*}{3.NBT-1 \({ }^{\text {r }}\)} \& \multirow[t]{2}{*}{3.NBT-1. Use place value understanding to round whole numbers to the nearest 10 or 100.} \& I can round whole numbers to the nearest 10. \& 21 rounded to the nearest 10 is 20 . 68 rounded to the nearest 10 is 70 . \& What multiple of 10 is immediately above and below the number 66? Which number is closer? \\
\hline \& \& \& \& I can round whole numbers to the nearest 100. \& 423 rounded to the nearest 100 is 400. 598 rounded to the nearest 100 is 600 . \& What multiple of 100 is immediately above and below 478? Which is closer? \\
\hline \& \& \multirow[t]{2}{*}{3.NBT-2} \& \multirow[t]{2}{*}{3.NBT-2. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.} \& I can add using numbers up to the thousands place value \& \(482+364=846\) \& Add a number to 361 that will increse the hundreds digit by 3 , the tens digit by 2 , and not change the ones digit. \\
\hline \& \& \& \& I can subtract using numbers to the thousands place value. \& \(8,967-7,896=1071\) \& Vinnie accidently added 235 to a number and got 537 when she was suppose to subtract 235. What should the answer be? \\
\hline \& \& 3.NBT-3 \& 3.NBT-3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., \(9 \times\) \(80,5 \times 60\)) using strategies based on place value and properties of operations. \& I can multiply a one-digit number by \(10,20,30,40,50\), 60, 70, 80, 90. \& \(8 \times 80=640 ; 7 \times 90=630\) \& Explain in words how a person could mentally multiply 70 by 4 . \\
\hline \multirow[t]{5}{*}{Number and Onerations-} \& \multirow[t]{5}{*}{Fractions * Number} \& \multirow[t]{3}{*}{and Odera

$3 . N F-1$} \& \multirow[t]{3}{*}{| ations- Fractions * Number and Oderati |
| :--- |
| 3.NF-1. Understand a fraction $1 / \mathrm{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$. |} \& ions Fractions * Number and Onerations Fraction \& \multirow[t]{2}{*}{ns * Number and Oderations F I can explain that the fraction $1 / 4$ means the whole has been divided into four equal parts.} \& \multirow[t]{2}{*}{Explain what John means when he says that he has divided the shape into thirds.}

\hline \& \& \& \& I can explain how a fraction like $1 / \mathrm{b}$ means the whole is divided into "b" equal parts \& \&

\hline \& \& \& \& I can explain how a fraction like a / b refers to "a" parts when the whole is divided into "b" equal parts \& I can explain that the fraction of $3 / 4$ means the whole has been divided into four equal parts and we have three of those parts. \& | What does the fraction $2 / 3$ mean? |
| :--- |
| A. 3 halves |
| B. 2 parts of thirds |
| C. 2 wholes cut into thirds |

\hline \& \& 3.NF-2a \& | 3.NF-2. Understand a fraction as a number on the number line; represent fractions on a number line diagram. |
| :--- |
| a. Represent a fraction $1 / \mathrm{b}$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. | \& I can label a number line using fractions. \& $\xrightarrow{4}$ \& | Which of the following letters represents the fraction $2 / 3$ on the number line shown. |
| :--- |
| A. A |
| B. B |
| C. C |

\hline \& \& 3.NF-2b \& | 3.NF-2. Understand a fraction as a number on the number line; represent fractions on a number line diagram. |
| :--- |
| b. Represent a fraction a/b on a number line diagram by marking off a lengths $1 / \mathrm{b}$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line. | \& I can create a number line with even intervals representing fractions. \& \[

\stackrel{1}{!}!\stackrel{2}{!}
\] \& Mark the number line shown into fourths and label the mark that represents $3 / 4$.

\hline
\end{tabular}

Third Grade * Common Core Mathematics

Domain Target	Cluster Target	Domain \& Standard	Standard	Learning Target	A Specific Example	ONE Example of Assessment
I can begin to explain how fractions are related to whole numbers. I can begin to explain how arithmetic with fractions is related (similar) to arithmetic with whole numbers.	I can begin to explain how fractions are related to whole numbers. I can begin to explain how arithmetic with fractions is related (similar) to arithmetic with whole numbers.	3.NF-3a	3.NF-3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	I can explain how two different fractions can be equivalent (equal in size).	2/4 and $5 / 10$ are the equivalent because they are both equal to $1 / 2$.	Write a paragraph explaining to your friend why $2 / 4$ and $1 / 2$ are equivalent.
				I can explain and show how two fractions can be at the same spot on the number line.	The fraction of $1 / 2$ and $2 / 4$ are the same place on a number line.	On the number line shown, label the places where $1 / 3$ and $2 / 3$ should appear.
		3.NF-3b	3.NF-3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. b. Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	I can identify equivalent fractions.	$5 / 10$ and $3 / 6$ are equivalent fractions because they are both equal to $1 / 2$.	Which of the following are equivalent? $2 / 4 ; \quad 2 / 6 ; \quad 1 / 2$
				I can create equivalent fractions.	Given $2 / 3$ I can find that $4 / 6$ is an equivalent fraction.	Write two fractions equivalent to $3 / 5$.
				I can explain why two fractions are equal by using a visual model.	When I look at the pictures of the cookies, I can tell that $1 / 2,2 / 4,3 / 6$ are equivalent.	What two fractions does this figure show to be equivalent?
		3.NF-3c	3.NF-3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3=3 / 1$; recognize that $6 / 1=6$; locate 4/4 and 1 at the same point of a number line diagram.	I can write a whole number as a fraction.	$3=\frac{3}{1}$	Which of the following is equivalent to 5 ? A. $1 / 5$ B. $5 / 1$ C. $5 / 5$
				I can identify a fraction that is a whole number.	$\frac{10}{2}=5$	What whole number could replace the faction at A?
		3.NF-3d	3.NF-3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or <, and justify the conclusions, e.g., by using a visual fraction model.	I can compare two fractions with the same numerator using >, $=$, or $<$.	$\frac{1}{4}<\frac{1}{2}$	What symbol, <, =, or $>$, should placed in the \square to make the sentence true? $\frac{1}{3} \square \frac{1}{6}$
				I can compare two fractions with the same denominator using <, $=$, or $<$.	$\frac{4}{5}>\frac{2}{5}$	What symbol, <, =, or >, should placed in the \square to make the sentence true? $\frac{4}{6} \square \frac{2}{6}$

Third Grade * Common Core Mathematics

Domain Target	Cluster Target	Domain \& Standard	Standard	Learning Target		pecific Example	ONE Example of Assessment		
Measurement \& Data	Measurement \& Data	* Measurement \& Data * Measurement \& Data		a * Measurement \& Data * Measurement \& Data * Measurement \& Data			Measurement \& Data * Measureme		
	I can solve real world problems involving time, liquid volumes, and the mass of objects.	3.MD-1	3.MD-1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	I can tell and write time to the nearest minute.	The time is $11: 43$		Which of the following times does the clock show? A. $11: 89$ B. $11: 43$ C. $12: 43$		
				I can measure time intervals in minutes.	Soccer practice started at 4:12 and ended at 4:56. Soccer practice lasted 44 minutes.		Time how long it takes for your heart to beat 100 times.		
				I can add and subtract intervals of time using minutes.	Lunch started at 12:05 and ended 30 minutes later. Lunch ended at 12:35.		Sally left for school at 7:45am. Mary left at 8:05am. How many minutes later did Mary leave than Sally?		
				I can solve time problems by adding or subtracting minutes on a number line.	(2 A link for instruction		Use the number line to find the difference between $12: 45$ \& $2: 15$.		
		3.MD-2	3.MD-2. Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). [6] Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. [7]	I can measure liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I).	I measured the water and found there was 2.5 liters.		Use the balance scale to find the weight of the pencil.		
				I can estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I).	The apple weighs about 100 grams		What is the approximate weight of a pencil? A. 10 grams B. 10 kilograms C. 10 liters		
				I can use drawings to solve one step word problems involving grams and kilograms.	How much does thebox marked"X" weigh?		How much does the box marked "X" weigh?		
				I can use drawings to solve one step word problems involving milliliters and liters.	How many milliliters when you combine the two containers?		How many milliliters when you combine the two containers?		
				I can draw a scaled picture graph to show data.	$\dagger=500$ visitors		Draw a picture graph to represent the data shown.		
					Jan $\\|$ ¢ $\\|$ \%		Easter Eggs Found on Hunt		
					Feb		Leah 3		
					Mar	\#t \# \# tittt			
					Apr		Kelsey 5 Amy 2		
					May				

Third Grade * Common Core Mathematics
can solve real world problems involving various measurement
such as time, liquid such as time, perimeter, and a

I can use drawings, charts, and graphs to help me solve these problems.

I can draw charts and
graphs with data and graphs with data and
explain what these explain what these
charts and graphs say about the data.

3.MD-3	3.MD-3. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	I can draw a scaled bar graph to show data.		Draw a bar graph fro Money Donated fo Monday $\$ 25$ Tuesday $\$ 12$ Wednesday $\$ 5$ Thursday $\$ 22$	the Charit	data shown. ity	
		I can answer one and two step questions about a picture graph.	One Step- How many visitors were seen in April? Two Step- How many more visitors were in May over January?	From the picture graph shown what is the difference between the number of visitors between February and May?	\# $=500$ visitors		
					Feb	\# $\\| \phi \phi \phi \phi$	
					Mar		
					Apr		
					May		
		I can answer one and two step questions about a bar graph.	One Step- What was the average temperature in 2002? Two StepHow much less was the temp. in 2002 than the highest year?				
3.MD-4	3.MD-4. Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate unitswhole numbers, halves, or quarters.	I can measure to the half inch.	The pencil is $31 / 2$ inches long.	Performance Task Measure the lengths of all the pencils belonging to the students in your classroom to the nearest quarter of an inch. Create a line graph to display this data.			
		I can measure to the fourth inch.	My finger is $23 / 4$ inches long.				
		I can create a line plot based on my measurement data.					
3.MD-5a	3.MD-5. Recognize area as an attribute of plane figures and understand concepts of area measurement.	I can use a unit square to measure area.		What figure would y cover the shape sho 3 in.	u use n? in.	to completely	
3.MD-5b	3.MD-5. Recognize area as an attribute of plane figures and understand concepts of area measurement. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	I can use unit squares to measure the area of a plane figure.		Draw the unit square shape shown. 3 in.	nece in.	ssary to cover the	
3.MD-6	3.MD-6. Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).	I can measure the area by counting unit squares.	$\underbrace{\text { Ensmamo }}$	After drawing the un that would complete cover the shape sho determine the area.	it squa n, 3	10 in. in. \square	

3.MD-7. Relate area to the operations of multiplication and addition.
3.MD-7a a. Find the area of a rectangle with wholenumber side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
3.MD-7b multiplication and addition
b. Multiply side lengths to find areas of the cengles with whole number side lengths in the context of solving real world and mathematical problems, and represent whole number products as rectangular areas in mathematical reasoning.
3.MD-7. Relate area to the operations of multiplication and addition
c. Use tiling to show in a concrete case that sidea a rectangle with whole-number and $a \times c$. Use area models to represent the and a $\times \mathrm{c}$. Use area models to repres reasoning. d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.
m

$|$| 3.MD-7. Relate area to the operations of |
| :--- |
| multiplication and addition. |
| d. Recognize area as additive. Find areas of |
| rectilinear figures by decomposing them into |
| non-overlapping rectangles and adding the |
| areas of the non-overlapping parts, applying |
| this technique to solve real world problems. |

\section*{	I can
I can	
leng	}

leng
I can

I can find rectangles with a given area to solve real world
problems.
I can find the area of a rectangle using tiles when the
rectangle is divided into two rectangles.
-

I can find the area of a rectangle that is divided into two rectangles by adding the area of both rectangles.
smaller rectangles and adding their areas.

Third Grade * Common Core Mathematics
 Leammon Core Mathematics

Learning Target
 A Specific Example

ONE Example of Assessment Find the are of the figure shown by first drawing the squares that completely fill the shape and then explain how this area can als shape and then explan how mis area can be calculate by using the measurements the sides. of 36 square feet.

Find the area of the living room floor if it measures 14 feet wide and 20 feet long.

Show all the rectangular arrays that are possible to represent the number 12 .

Mrs. Jones gave each student two pieces of paper. One measured 4in by 5in and the them together as shown below. Find two different way to calculate the total area of different way to calculate the total area of the
paper and explain why it works.

Third Grade * Common Core Mathematics

[1] See Glossary, Table 2 (shown below)
[2] Students need not use formal terms for these properties.
[3] This standard is limited to problems posed with whole numbers and having whole number answers;
students should know how to perform operations in the conventional order when there are no
parentheses to specify a particular order (Order of
Onerations).
[41 A range of algorithms may be used.
[5] Grade 3 expectations in this domain are limited to fractions with denominators $2,3,4,6$, and 8 .
[6] Excludes compound units such as cm 3 and finding the geometric volume of a container
[7] Excludes multiplicative comparison problems (problems involving notions of "times as much", see
Glossary, Table 2).

Third Grade * Common Core Mathematics
Learning Target

	Unknown Product	("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)
	$3 \times 6=$?	$3 \times$? $=18$, and $18 \div 3=$?	$? \times 6=18$, and $18 \div 6=$?
EqualGroups	There are 3 bags with 6 plums in each bag. How many plums are there in all?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?	f 18 plums are to be packed 6 to a bag, then how many bags are needed?
	Measurement example. You need 3 lengths of string, each will you need altogether?	Measurement example. You have 18 inches of string, which How long will each piece of string be?	Measurement example. You have 18 inches of string, which 6 inches long. How many pieces of string will you have?
	There are 3 rows of apples with 6 apples in each row. How many apples are there?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row?	f 18 apples are arranged into equal rows of 6 apples, how many rows will there be?
	Area example. What is the area of a 3 cm by 6 cm rectangle?	Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
	A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?
Compare	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 8 cm long. How many times as ong is the rubber band now as it was at first?
General	$a \times b=$?	$a \times P=p$, and $p * a=$?	$P \times b=p$, and $p \div b=$?

The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and
columns:
value apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are
Aluable.
Area inves arrays of squares that have been pushed toge
nclude these especially important measurement ituations.
[1] These take apart situations can be used to show all the decompositions of a given number. The associated equations,
which have the total on the left of the equal sign, help children understand that the $=$ sign does not always mean
which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes of results in
[2] Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10 .
[3] For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (t.
for the bigger unknown and using less for the smaller unknown). The other versions are more difficult.
Created by Carl Jones, Darke County ESC, Karen Smith

