KINDERGARTEN＊Common Core Mathematics								
Domain Target	Cluster Target	Grade \＆ Domain	standard	Learning Target	A Specific Example	Assessment		
ount，		ty＊Co	ounting \＆Cardinality＊Counting \＆Card	dinality＊Counting \＆Cardinality＊Counting	Cardinality＊	mastery	emerging	novice
		K．CC－1	Count to 100 by ones and by tens	I can count to 100 by ons	＂1，	They can count to 100 with no errors．	$\left\lvert\, \begin{aligned} & \text { They can count to } 100 \text { with on } \\ & \text { corections．}\end{aligned}\right.$	They need siginificant help to count to 100 ．
		k．ce－1	by ones and by tens	I can count to 100 by tens．	＂10，20，30，40，	They can count to 100 by 10 ＇s with no errors．	They can count to 100 by 10 ＇s with a little help．	They need significant help to count to 100 by 10＇s．
		K．CC－2	Count forward beginning from a given number within the known sequence（instead of having to begin at 1）．	I can count forward starting at any number that is given to me from 1 to 100 ．	Generate a random number with a pair of dice and have the student start counting from that number on	When given a random 2 digit number，they can count for at least 10 more．	When given a random 2 digit number，they can count on with some prompting．	When given a random 2 digit number，they can count cannot count on．
				I ca	$1,2,3, \ldots 20$	They can legibly write the numeral 1 to 20 ．	They can write most of the numerals from 1 － 20 legibly and in the correct order．	They have numerous errors and／or the numerals are not legible．
		к．CC－3	number of objects with a written numeral 0 － 20 （with 0 representing a count of no	I can write the number that names how many objects are in the group to 20.	O回园 is 4	When shown any group of counter（up to 20）， they can write the correct numeral．	When shown a group of counters（up to 20）， they can write the correct numeral at least half the time．	When shown a group of counters（up to 20）， they can rarely write the correct numeral．
				I can show／explain what a group of zero looks like．	＂A group of zero has no objects．＂	They explain／show the teacher that＂0＂ represents a group with no objects．	They are sometimes confused about zero and what it represents．	They have no understanding of zero．
I can state the number that names the objects in a group（set）． I can solve problems by comparing the number of things in a group（set）．	I can count how manythings are in a group and how that last number is the name for the whole group．	－4a	Understand the relationship between numbers and quantities；connect counting to cardinality． a．When counting objects，say the number names in the standard order，pairing each object with one and only one number name and each number name with one and only one object．	I can count objects by touching and saying the correct number for each object．		They can count the objects in a group and have good one－to－one correspondence with the number and the object．	They can usually count objects by naming the correct number in order but sometimes make mistakes or need prompting．	They have difficulty in counting objects and don＇t understand that each number is for just one object when they count．
		к．cc－4b	Understand the relationship between numbers and quantities；connect counting to cardinality． b．Understand that the last number name said tells the number of objects counted．The number of objects is the same regardless of their arrangement of the order in which they were counted．	I can name the number of objects in a group after counting．	(In kno this is a	After counting a group，the student knows the last number named，also names the entire group．	After counting a group，the student sometimes knows the last number named， also names the entire group．	The student has difficulty in distinguishing between counting by ones and when a number names an entire group．
				I know the number of objects in a group does not change even when I start counting with a different object．	0^{2}＂I can start counting with any object and always get five．＂	The student knows they can count starting with any object and still get the same number． （i．e．same whether I count rows or columns）	The student knows they can count starting with any object and still get the same number but needs to perform the task to affirm the correct answer．	The student thinks the objects must be re－ counted each time you start with a different object．
		K．CC－4c	Understand the relationship between numbers and quantities；connect counting to cardinality． c．Understand that each successive number name refers to a quantity that is one larger．	I can name the number of objects in a group even after they have been mixed up．	＂Even if you move these objects around I know there are five without recounting．＂	After a student has counted a group，the group can be re－arranged and the student still knows the number of the group without re－ counting．	After a student has counted a group，the group can be re－arranged and the student usually knows the number with minimal prompting． prompting．	Each time a group is counted and then re－ arranged，the student has to re－count to name the number in the group．
				I can name the number that is one more than the you show me．	$\square]^{-1}$＂One more than this	The student understands the relationsh	The student understands a number being one more or one less and a a roup of objects being	The student shows confusion about a number being one more or one less and a group of
				I can find a group that is one more than the group you show me． show me．	0 回＂This group is one more than the previous group．＂	between a number being one more or one less and a group of objects being one more or one less．	one more or one less but confuses how the numbers and groups can relate to one another．	objects being one more or one less and confuses how the numbers and groups can relate to one another．
		к．CC－5	Count to answer＂how many？＂questions about as many as 20 things arranged in a line，a rectangular array，or a circle，or as many as 10 things in a scattered count out that many objects．	I can count random objects up to groups of 10 ．	When you drop a group of 7 objects on the table，they can count them and tell you how many．	They can count random groups up to 10 ．	They can count small random groups but have some trouble with larger ones．	They have trouble counting any random group．
				I can count＂organized＂objects that are in a group up to 20.	When you arrange 15 objects in 5 rows of three，the student can count them．	They can count organized counters that are ＂arranged＂in groups up to 20.	They can count smaller arrangements of counters but need some support counting larger groups	They have significant difficulty counting larger groups of arranged counters．They don＇t take advantage of the arrangement．
				I can count out the correct number of objects to make a group（up to 20）．	＂If you tell me to make a group of 16 ，I can select counters and make that group．＂	Given a random number from 1 to 20，they can assemble that many counters．	Given a random number from 1 to 20，they can sometimes assemble that many counters．	Given a random number from 1 to 20，they difficulty showing that many counters．
	I can compare two numbers and tell which is larger，which is smaller，or if they are the same．	k．CC－6	Identify whether the number of objects in one group is greater than，less than，or equal to the number of objects in another group，e．g．， by using matching and counting strategies．［1］	I can compare two groups and tell which has the greater number，which has lesser number，or if they are the same．	＂When I see a group of 5 and a group of 7 ，I can tell you which group is larger（or smaller）by counting or sometimes by just looking at the arrangement．＂	The student uses strategies of comparing arrangements with two groups to determine the larger，smaller，or if they＇re the same．	The student needs to count each of two groups to determine if one is larger，smaller， or the same．	The student has difficulty and needs support when trying to determine if one group is larger，smaller，or the same as a second group．
		к．cC－7	Compare two numbers between 1 and 10 presented as written numerals．	I can look at two numbers from 1 to 10 and tell which is larger／smaller，more／less，greater than／less than．	＂I know that＇ 7 ＇is larger than＇5＇and even better I know it is＇2＂larger．＂	The student can compare two numbers and tell which is larger or smaller．Even better， they can locate them on the number line．	They student can compare two numbers and usually tell which is larger or smaller．	They student has difficulty comparing two numbers to tell which is larger or smaller．

main Target	Learning Target					nent		
Operations \& Algebra I can explain how addition is putting together and adding to I can explain how subtraction is taking apart and taking from.	* Operations \& Alg I can explain how addition is putting together and adding to. I can explain how subtraction is taking apart and taking from.		tions \& Algebra * Operations \& Algebra	Operations \& Algebra * Operations \& Algebra	Operations \& Algebra	mastery ${ }^{\text {a }}$ emercing ${ }^{\text {a }}$		
			Represent addition and subtraction with objects, fingers, mental images, drawings[2], sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations.	I can add in many ways (including fingers, objects, pictures, sounds, etc)	"I can show $2+3$ by putting counters out and showing the total of 5".	The student can show any addition problem within 10 by at least two different models.	The student can show most addition problems within 10 by at least one model.	The student has difficulty showing an addition model for problems within ten.
		K.OA-1		I can subtract in many ways (including fingers, objects, pictures, sounds, etc)	"I can show 7-4 by having 7 students stand in a group and then have 4 students walk away"	The student can show any subtraction problem within 10 by at least two different models.	The student can show most subtraction problems within 10 by at least ones mod	The student has difficulty showing an subtraction model for problems within
		K.OA-2	Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.	I can solve word problems the teacher gives me using addition and subtraction.	"Billy has 6 hats and Sally has 4 hats. Who has more? How many more?"	The student can consistently solve addition and subtraction word problems.	The student can usually solve addition and subtraction word problems with minimal help.	The student rarely can solve addition and subtraction word problems without significant help.
		K.OA-3	Decompose numbers less than or equal to 10 into pairs in more than one way, e.9., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., $5=2+3$ and $5=4+1$) $5=2+3$ and $5=4+1$).	I can break apart a number from 1 to 10 and show it in different ways.	"Seven can be 3 and 4, 5 and 2, 4 and 3,7 and 1,0 and $7, \ldots$	The student can fluency and flexible thinking to decompose any number from 1 to 10 .	The student is fairly fluent in decomposing numbers from 1 to 10 but needs some help to think of multiple ways to represent all the addends.	The student has difficulty in breaking apart (decomposing) numbers from 1 to 10 and needs significant help when doing so.
		K.OA-4	For any number from 1 to 9 , find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.	Given a number from 1 to 10 , I can find the number to make 10 and show it in different ways.	"I know it takes three more to make 7 into 10 . I can show that using $7+$ groups of counters"	The student is fluent at "making ten" (naming the number to add to make 10) and can represent it with multiple ways. (10-frame, drawings, objects, equations, etc)	The student can usually make ten from the numbers 0-9 but needs help with multiple representations (10-frame, drawings, objects, equations, etc)	The student has difficulty "making ten" from the numbers 0-9 and needs help with multiple epresentations (10-frame, drawings, objects, equations, etc)
		K.OA-5	Fluently add and subtract within 5 .	I can QUICKLY and EASILY add and subtract any of the numbers from 1 to 5 .	"I can add and subtract within 5 quickly without external help or Counting in my head."	The student can add and subtract any number, $0-5$, mentally and without counting in an efficient way.	The student can add and subtract most numbers, $0-5$, mentally and without counting in an efficient way	The student cannot add and subtract many numbers, 0-5, mentally and without counting.
I can explain how the "teen numbers" and ten and some ones.	I can explain how the "teen numbers" and ten and some ones.	K.NBT-1	Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (e.g., $18=10+8$); understand that these numbers are composed of ten ones and one, two, three, four, five, six seven, eight, or nine ones.	Given a number from 11 to 19, I can tell and show how many tens and how many ones make the number.	"I know that 14 is a ten and four more. I can also show that with a ten stick and 4 additional blocks."	The student understands the efficiency of grouping by ten and can name the "ten and ones" necessary for any number 11-19.	The student can name the "ten and ones" necessary for most numbers 11-19.	The student has difficulty naming the "ten and ones" necessary for the numbers 11-19.
Measurement \& Data *	Measurement \& Data *	Measurement \& Data * Measurement \& Data * Me		easurement \& Data * Measurement \& Data * Measurement \& Data *		master	emergin	ovic
	I can explain what things can be measured for an object.	K.MD-1	ment \& Data * Measurement \& Data * Mea Describe measurable attributes of objects, such as length or weight. Describe severa measurable attributes of a single object.	I can describe different ways to measure an object.	"I could describe how long a book is or how wide it is. I could also talk about how heavy it is."	The student can describe all the ways you could measure an object including measures of length, weight, and how much it holds. (volume)	The student can describe some of the ways you could measure an object including measures of length, weight, and how much it holds. (volume)	The student at best can only describe one thing you could measure about an object.
		K.MD-2	Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe on child as taller/shorter.	I can compare two objects by measurement and talk about how they are different.	I know when comparing two books that one might be longer or wider and also it could be heavier."	The student can compare two objects by measurement and talk about how they are different. (one is taller, longer, larger, heavier, lighter, etc)	The student can usually compare two objects by measurement and but needs help when talking about how they are different.	The student has difficulty comparing two objects by measurement and needs significant help when talking about how they are different.
	I can put similar objects together and explain why they are similar.	K.MD-3	Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.[3]	I can put objects into groups so that each group has something the same. I can count the objects in a group and put the groups in order from least to greatest.	"Given some shapes I can sort them into groups by color or shape."	The student can sort objects/shapes by a particular attribute and describe that attribute.	The student can usually sort objects/shapes by a particular attribute and describes that attribute with some help.	The student has difficulty sorting objects/shapes by a particular attribute and cannot describe the attribute.
					"I counted the shapes in each group and can arrange them from the largest group to the smallest."	The student can count the objects/shapes in each group and can arrange them from the largest group to the smallest.	They student can usually count the objects/shapes in each group and can arrange them from the largest group to the smallest.	They student can usually count the objects/shapes in each group but has difficulty arranging them from the largest group to the smallest.

[1] Include groups with up to ten objects.
[2] Drawings need not show details, but
[2] Drawings not show details, but should show the mathematics in the problem
(This applies wherever drawings are mentioned in the Standards.)
[3] Limit category counts to be less than or equal to 10 .
Created by Carl Jones * Darke County ESC * 1-3-2011

